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Fig. 1: ConDense extract co-embedded feature for 2D or 3D inputs. The model not
only has improved performance over previous pre-training methods but also enables
efficient cross-modality, cross-scale queries such as 3D retrieval and duplicate detection.

Abstract. To advance the state of the art in the creation of 3D foun-
dation models, this paper introduces the ConDense framework for 3D
pre-training utilizing existing pre-trained 2D networks and large-scale
multi-view datasets. We propose a novel 2D-3D joint training scheme
to extract co-embedded 2D and 3D features in an end-to-end pipeline,
where 2D-3D feature consistency is enforced through a volume render-
ing NeRF-like ray marching process. Using dense per pixel features we
are able to 1) directly distill the learned priors from 2D models to 3D
models and create useful 3D backbones, 2) extract more consistent and
less noisy 2D features, 3) formulate a consistent embedding space where
2D, 3D, and other modalities of data (e.g., natural language prompts)
can be jointly queried. Furthermore, besides dense features, ConDense
can be trained to extract sparse features (e.g., key points), also with
2D-3D consistency – condensing 3D NeRF representations into compact
sets of decorated key points. We demonstrate that our pre-trained model
provides good initialization for various 3D tasks including 3D classifica-
tion and segmentation, outperforming other 3D pre-training methods by
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a significant margin. It also enables, by exploiting our sparse features,
additional useful downstream tasks, such as matching 2D images to 3D
scenes, detecting duplicate 3D scenes, and querying a repository of 3D
scenes through natural language – all quite efficiently and without any
per-scene fine-tuning.

1 Introduction

The rapid advancement of 3D computer vision has led to significant break-
throughs in understanding and interpreting the world in three dimensions. How-
ever, achieving robust performance across a range of 3D perception tasks is chal-
lenging when we try to match the accomplishments of large pre-trained models
in the natural language and 2D vision domains. The path to a 3D foundation
model is hampered by the relative scarcity of 3D data compared to 2D images,
and especially the increased difficulty of obtaining quality annotations in 3D. At
the same time, 3D models need to co-exist and communicate with language or
language-vision models, if we are to optimally use priors in perceiving, reasoning,
and acting on the physical world. Motivated by these considerations we propose
a novel approach for large-scale 3D pre-training that leverages the knowledge
encoded in extant pre-trained 2D networks, capitalizes on the availability of
large-scale multi-view datasets, and learns consistent 2D-3D features.

In this paper, we introduce a comprehensive 2D-3D joint training scheme,
named ConDense, aimed at extracting co-embedded 2D and 3D features in
an end-to-end pipeline. Our approach goes beyond conventional pre-training
methods by enforcing 2D-3D feature consistency through 2D-3D consensus. This
consistency is established by cross-checking the extracted 2D and 3D features via
a ray-marching process inspired by Neural Radiance Fields (NeRFs), ensuring
that the learned features align seamlessly in both the 2D and 3D domains.

In addition, ConDense represents the extracted features in two forms: a
dense per-pixel representation and a sparse key point-based representation. This
dual representation allows us to capitalize on the strengths of both types of fea-
tures, making ConDense versatile and adaptable to a wide range of downstream
tasks. Consider, for example, the fact the NeRFs have made the capture of 3D
scenes a lightweight and widely available process. We will soon have hundreds
of millions of objects and scenes in a NeRF form and the need arises to organize
and search large collections of such data – and in particular to interrogate them
using language and image queries. Our sparse key point representation and joint
2D-3D embeddings enable and facilitate such multi-modal cross-domain queries.

Our contributions can be summarized as follows:

– We propose ConDense, a novel 3D self-supervised pre-training scheme. By
leveraging only large-scale 2D multi-view image datasets and 2D foundation
models, we are able to achieve 3D pre-training with state-of-the-art down-
stream task performance, even when compared to 3D pre-training methods
that utilize 3D training data.
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– Our approach leads to the creation of more consistent and less noisy 2D
features, enhancing the quality of existing 2D visual representations, and
shows better performance than base models in various downstream 2D tasks.

– By learning sparse features jointly with the dense features for both 2D and
3D, we enable several novel tasks such as efficiently matching 2D images to
larger-scale 3D scenes, or matching 3D captures of the same scene to each
other.

– We establish a unified embedding space where 2D, 3D, and other modalities
(e.g., natural language prompts) can be jointly queried, enabling efficient
matching using either dense or efficient sparse features.

To validate the effectiveness of our large-scale pre-training approach, we con-
duct extensive experiments, showcasing its superior performance in various tasks.
Furthermore, our pre-trained model opens up exciting possibilities for down-
stream applications, such as querying 3D scenes through natural language inputs
or efficiently matching 2D images to 3D scenes, all without per-scene fine-tuning.

2 Related Work

2D Representation Learning and Foundation Models. Initial works on
self-supervised 2D representation learning employ various pretext tasks derived
from the images themselves [5,38,71], etc. Another line of work adopted discrim-
inative strategies, such as instance classification [20], treating each image as a
unique class and employing data augmentation for training. Recent advances in
patch-based architectures, like Vision Transformers (ViTs) [17], revived interest
in pretext tasks, particularly inpainting in both image and feature space. Vari-
ous works find that masked-autoencoders (MAEs) provide strong initialization
for downstream tasks [19]. However, all these pre-trained features require ad-
ditional supervised fine-tuning. More recently, foundation models, referring to
pre-trained models adept at a broad range of tasks, have seen expansive growth
within the vision domain through variants that have successfully adapted to nu-
merous vision-related tasks. Notably, the CLIP model [44] leverages contrastive
learning from extensive image-text pairs to achieve zero-shot task transferability.
DINO [6, 35] demonstrates the emergence of various desirable properties in its
features through self-supervision, facilitating its direct application across diverse
visual tasks.
3D Representation Learning and Foundation Models. Despite advances
in 2D representation learning and foundation models, 3D models lag behind
greatly due to dataset and architecture constraints. A major line of research
proposed various pretext tasks for 3D point clouds [37, 74]. The recent suc-
cess of ViTs in 2D has also spurred the exploration of their counterparts in 3D
domains [29, 37, 68, 81]. However, all these models require 3D point clouds for
pre-training. Most of them are pre-trained on ScanNet [14] (around 1000 scenes)
and ShapeNet [7] (around 50k objects, synthetic), and are thus constrained by
the limited amount of real-world data available.
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2D to 3D Feature Distillation and Multi-Modality Embeddings. With
the recent development of large-scale 2D foundation models and multi-modality
embeddings (e.g ., CLIP for images and languages), many have tried to distill
the knowledge learned from these models and extend their application to 3D
data formats. PointCLIP and PartSLIP [31, 70] achieves zero-shot point cloud
classification and segmentation by projecting point clouds to 2D depth maps
and applying the 2D pre-trained models directly. OpenShape, ULIP, and ULIP-
2 [30,61,62] collects text, image, and point cloud triplets and takes advantage of
pre-aligned vision-language feature space to achieve alignment among the triplet
modalities. Specifically, they fix the visual-language embedding space and only
tune their 3D point cloud encoder to achieve this alignment. These methods
focus on the task of point cloud classification and their design cannot be easily
extended to other 3D tasks or 3D input formats. Several methods have been pro-
posed for dense feature encoding in 3D [39,78,81]. For example, OpenScene [39]
trains on point cloud-grounded multi-view datasets and learns a 3D point cloud
network from multi-view aggregated 2D features. Like PointCLIP and ULIP,
OpenScene requires 3D point clouds for training, which are scarce and hard to
collect in the real world on a large scale, when compared to multi-view images.
These works also re-use the embedding space from the 2D foundation model and
only distill the 3D encoder.

More recently, Neural Radiance Fields (NeRFs) [33] and numerous subse-
quent follow-ups [3,72] have gained great success in novel view synthesis. NeRF
has the property of aggregating information across views. Several recent works
leverage this property to improve the quality of semantic segmentation [25,73,75].
Many works distill features (e.g ., DINO [6] and CLIP [45]) into 3D and demon-
strate they can be used for downstream tasks such as natural language-based
query. These works require per-scene distillation and optimization. FeatureN-
eRF [65] proposed to distill features from 2D foundation models to 3D space via
generalizable NeRFs [8,66]. Through distillation, the learned model can lift any
2D images to continuous 3D semantic feature volumes. However, the pipeline
serves more as a 2D-to-3D lifting technique and cannot handle native 3D data
directly.

NeRF for Perception. The integration of Neural Radiance Fields (NeRF)
into various discriminative perception tasks such as classification, detection, and
segmentation has also been explored [52, 73]. These methods typically follow a
reconstruction-then-detection pipeline by creating NeRFs from multi-view image
data first and then designing task-specific networks and loss terms to tackle
each perception task, and many of them work in a scene-by-scene manner and
require re-training and optimization for each new scene. More recently, NeRF-
Det [60] incorporates generalizable, feature-conditioned NeRF, and 3D detection
pipelines to achieve efficient detection performance with no per-scene fine-tuning.
Our work is inspired by these ideas while developing further by joining forces
with 2D foundation models and creating a pre-training pipeline that is native to
both 2D images and 3D formats.
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Querying 3D Data. A variety of works have explored 3D to 3D similarity
queries in pre-deep learning period, mostly at the object level, by constructing
human-designed whole object features encoded as Euclidean embeddings or as
distributions [9,36]. Later some works explored learned embedding spaces, as well
as co-embeddings of images and 3D models [28]. Inspired by the bag-of-words
paradigm in image search, “bags-of-features” have also been investigated in 3D
to 3D search, for example [4]. However, none of these approaches is integrated
into a multi-task framework, as we aim to do here and they are largely focused
on object retrieval, not scenes.

3 Preliminaries

Neural Radiance Fields (NeRFs) [33] offer a novel representation of 3D
scenes, capturing continuous volumetric scenes as neural networks. We briefly
describe the mechanism of the NeRF and refer to [3,33] for details about related
NeRF models. A NeRF F maps a 3D coordinate x = (x, y, z) and a viewing
direction d = (θ, ϕ) to a color c = (R,G,B) and density σ – F : (x,d) 7→
(c, σ), where color c is related to both point location x and viewing direction
d, recording the local appearance information, and density σ is only related to
point location x, recording the local geometry information.

The rendering of a 3D scene from a 2D perspective is formulated as a volume
rendering problem. Given a ray r(t) = o + td, where o is the camera origin
and t is the distance along the viewing direction d, the color C(r) of the ray is
computed as:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d) dt, T (t) = exp

(
−
∫ t

tn

σ(r(s)) ds

)
, (1)

where T (t) is the accumulated transmittance along the ray from tn (near bound)
to tf (far bound). In practice, discretized approximations are used to evaluate
this integral. The process is also called ray marching, which can be used as a
general tool to render from any 3D feature field f and get a 2D-projected feature
map as shown in many previous works [52, 73, 75]. The property can be used to
bridge the 3D feature field of a scene with its 2D feature maps and is the basis
of our 2D-3D consensus pipeline.
2D Foundation Models are deep learning models that have been extensively
pre-trained on large-scale image datasets. Let G be a 2D foundation model that
maps an input image I to a feature representation F: G : I 7→ F. The feature rep-
resentation F is a high-dimensional vector that captures the essential properties
such as geometry and semantic information of the input image I. Of particular
interest, our work leverages DINO [6, 35], a self-supervised learning approach
for visual representation trained on large-scale image datasets. Its latest version,
DINOv2, excels in capturing both fine-grained details and global contextual in-
formation from images without any labeled data. By initializing the 2D encoder
from DINOv2, we tap into a robust source of information-rich 2D dense features,
and can thus kick-start our 3D encoder from 2D-3D knowledge distillation.
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Fig. 2: Dense feature encoding: the 3D encoding module G3D is composed of a swappable
input processing head J3D and a common 3D reasoning backbone H3D. J3D maps input
3D scenes of various formats into a feature Js in a unified 3D embedding space. H3D

turns Js into a 3D feature grid Fs. Through interpolation on Fs and volume rendering,
a 3D-projected feature map F3D can be obtained and compared with a 2D dense feature
map F2D, extracted from the 2D encoding module G2D. The resulting 2D-3D consensus
loss L2D3D is used as a self-supervision signal. An additional 2D fidelity loss Lfid is
introduced to make sure that the 2D-3D consensus optimized 2D feature F2D does not
deviate too much from the original 2D feature in order to retain some of its semantics
and visual richness.

4 Method

An overview of our approach is illustrated in Fig. 2 (dense feature encoding) and
Fig. 3 (key point prediction). Our model is composed of two branches, encoding
2D and 3D information, respectively (Sec. 4.1 and Sec. 4.2). Both branches
encode features in two forms – dense format and key-point-based sparse format
(Sec. 4.4). During training, we use paired 2D-3D inputs in the form of multi-view
images and the corresponding NeRF scene. The information extracted in 2D and
3D branches is compared via 2D-3D consensus (Sec. 4.3) so that information can
flow both ways.

4.1 2D Encoding

The 2D encoding branch (G2D) of the ConDense framework is crucial for ex-
tracting rich visual features from multi-view images, which later are learned
synergistically with the 3D encoding module. We follow the network architec-
ture of DINOv2 [35] to use ViT [17] as the base for our 2D encoder and load
the pre-trained DINO weights for the initialization of our 2D branch. The ViT
architecture takes as input a grid of non-overlapping contiguous image patches of
resolution N×N . In this paper, we use N = 14 (“/14” ViT models). The patches
are then passed through a linear layer to form a set of embeddings. Following
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previous works [6, 17], an extra learnable [CLS] token is added to the sequence
to aggregate global information. These patch tokens and the [CLS] token are fed
to the standard transformer blocks and updated by the attention mechanism.

For any given input image I, the 2D branch generates a dense feature map
F2D = G2D(I). This feature representation F2D is a high-dimensional vector en-
coding various essential attributions of the input image, and can already be used
out-of-the-box due to its pre-training on large-scale image datasets. We will later
show that combined with our 2D-3D joint training, the feature branch can be
further improved for various downstream tasks.

4.2 3D Encoding

The 3D encoding branch (G3D) of the ConDense framework is aimed at extract-
ing a 3D feature field from various data formats. It is designed to be composed
of two parts: G3D = H3D ◦ J3D, where J3D is the input processing head and H3D
is the actual 3D reasoning backbone. Different 3D data formats have their indi-
vidual input processing heads, but they share a common 3D reasoning backbone
H3D. The major 3D inputs we are dealing with are NeRF models, while we also
support other data formats such as point clouds. Here we detail the full pipeline
for 3D feature field reasoning from NeRF data.
Grid Sampling from NeRF. Given any learned NeRF function F : (σ, c),
we sample uniformly on a 3D lattice within the normalized scene bounding box
[−1,+1], with spacing ϵ between samples:

Σs = {σ(x), s.t. x ∈ [−1 : ϵ : 1]3}, (2)

Cs = {c(x,d), s.t. x ∈ [−1 : ϵ : 1]3,d ∈ D}, (3)

where D is a predefined set of directions aiming to capture as much local ap-
pearance information as possible. In order to reduce computation costs, we use
the density field from the input NeRF to sparsify these grids. Specifically, we
calculate sample opacity by α(x) = 1 − exp(−σ(x)) due to the canceled-out
spacing term δt in the regular grid [60], and filter out the point samples x with
α(x) < θ. After sparsification, the evaluated sigma value and color values are
concatenated for each grid sample and fed into the input processing head, which
is a small 3D sparse convolutional network:

Js = J NeRF
3D (Concat(Σs,Cs)). (4)

Here Js serves as the input embedding for the 3D reasoning backbone, while
different input processing heads take care of mapping data from different input
sources to this input embedding space. For point cloud inputs, we first voxelize
the data before feeding it into a small 3D network. Please check the appendix
for more details.
3D Spatial Reasoning. We apply a 3D UNet [13] implemented with sparse
convolution blocks to obtain a 3D feature grid Fs from the aforementioned input
embedding:

Fs = H3D(J
s). (5)
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The module enables reasoning in 3D space. To obtain the feature for an
arbitrary 3D query point x ∈ R3, we interpolate within the feature grid Fs with
a trilinear interpolation operator:

f3D(x) = TriLerp(x,Fs). (6)

4.3 2D-3D Consensus with 2D Fidelity

With the proposed 2D and 3D encoders, our model can generate co-embedded
dense features given 2D or 3D inputs. During training, we use paired data of
multi-view 2D images {Ik} and their corresponding learned NeRF F : (σ, c) to
jointly train the 2D and 3D branches.

Specifically, for each scene, we first generate the 3D feature field f3D as detailed
in Sec. 4.2. Based on this feature field and the scene density σ, we can adapt the
rendering equation to render 3D-projected feature maps as in [52,75]:

F3D(r) =

∫ tf

tn

T (t)σ(r(t))f3D(r(t)) dt. (7)

In the meantime, we generate the 2D feature map with our 2D branch: F2D =
G2D(Ik) and adopt the consistency loss between the 3D rendered feature map F3D
the 2D-originated counterpart F2D with L2 loss:

L2D3D(F2D,F3D) =
∑
r∈R

||F2D(r)− F3D(r)||22. (8)

R denotes all camera rays in the multi-view image set of the scene that hit at
least one active voxel in the 3D feature grid Fs. The loss encourages information
to flow both ways – the 3D branch could learn to generate useful 3D feature fields
from the 2D multi-view supervision, and the 2D branch could also benefit from
consistent underlying 3D geometry and learn to extract less noisy, multi-view
consistent, and 3D-informed features.

Due to the biased and scarcer nature of the existing multi-view image datasets,
if we optimize the networks based only on this 2D-3D consistency loss, the fea-
ture quality may degrade due to trivial solutions and biased data distribution.
To prevent this, we propose to insert an additional output head called 2D fidelity
head K2D before the second-to-last transfer block (see Fig. 2), and apply the 2D
fidelity loss to keep its output Ffid

2D from deviating too much from the original
DINOv2 [6] feature:

Lfid(F
fid
2D ) = ||Ffid

2D − Ft
2D||22, (9)

where Ft
2D is the pre-trained DINOv2 feature. No ground-truth labels are used

in this loss, and this term can be applied on any natural image collection. We
adapt ImageNet-21k [47] in our pipeline.
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Fig. 3: Key point prediction: key points are detected in both 2D (P2D) and 3D (P3D)
based on the existing feature backbones. The 2D-3D key point loss Lp is used as a
self-supervision signal.

4.4 Key Point Extraction

With the proposed 2D and 3D encoders and the joint training scheme, our model
can generate co-embedded dense features given any input 2D image or 3D scene.
This property is desired since it enables possible applications to query among
2D, 3D, and other modalities. To further facilitate these applications, we add
support for sparse key point detection in both 2D and 3D based on the existing
feature backbones for efficient queries across scene scales.

As shown in Fig. 3. To detect key points in 2D images, we follow a similar
formulation as in [16] and decode the 2D backbone feature F2D into the full
image-resolution interest point possibility map P2D with 2 MLP layers with a
softmax output head (noted as M2D). Please refer to [16] and our Appendix for
more in-depth details. For the 3D branch, we similarly use 2 MLP layers with a
ReLU output head (noted as M3D) to decode the key point possibility on the 3D
feature grid Fs, and the possibility maps are rendered and compared between
2D and 3D using the aforementioned 2D-3D consensus scheme:

P2D = M2D(F2D), (10)

P3D(r) =

∫ tf

tn

T (t)σ(r(t))p3D(r(t)) dt, (11)

Ps = M3D(F
s), p3D(x) = TriLerp(x,Ps), (12)

Lp(P2D,P3D) =
∑
r∈R

||P2D(r)−P3D(r)||22. (13)

During test time, 3D key points are selected directly from opaque 3D grid
samples. We multiply the opacity value by the predicted key point possibility
and use α(x)× p3D as the selecting criteria for the 3D key points.

We argue that the joint 2D-3D key point detection not only helps enable
various query tasks based on dense feature backbones (Sec. 5.3) but also serves
as a useful technique to improve the overall feature quality (Sec. 6).
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4.5 Training Details

Loss Terms. The final loss L is given by:

L = λ2D3DL2D3D + λfidLfid + λpLp, (14)

where λ2D3D, λfid, and λp are scalars adjusted throughout the training process.
Check the appendix for more details.
Datasets and Model Details. For all experiments included in the main ex-
periments, we use MVImgNet [67], ScanNet [14], and RealEstate10k [79] as our
multi-view pre-training datasets. MVImgNet is an object-centric dataset con-
taining a total of 6.5 million frames from more than 200k video captures of
diverse objects. ScanNet and RealEstate10k are indoor scene-scale datasets each
containing a diverse set of scene captures in the form of video clips. Though
other modalities are provided in some of these datasets (e.g . point clouds, se-
mantic labels, etc.), we only use the posed images in pre-training. The scenes are
fit into MipNeRF-360 [3] models individually before being used for pre-training.
ImageNet-21k [47] is used to provide image samples for the 2D fidelity loss in
addition to the multi-view datasets. ImageNet-21k is the superset of the com-
monly used ImageNet-1k dataset and contains more than 14 million images.
We utilize Vision Transformers (ViT-g/14) as the backbone for the 2D branch
and use 8 A100 GPUs for training. See the Appendix for more details on data
pre-processing and model hyper-parameters.
Training Scheme. We bootstrap the full training process of ConDense in
four stages. First, the 2D feature backbone G2D is initialized from DINOv2 [6]
pre-trained weights. We then freeze its weights and fit the 2D key point de-
tector MLPs (M2D) by enforcing the interest point heatmap predictions to a
pre-trained, frozen SuperPoint [16] model. Then both G2D and M2D are kept
frozen, while the 3D branch modules G3D and M3D are optimized from L2D3D and
Lp. In this stage, we distill the knowledge from the 2D foundation models to kick
start the learning of 3D modules. For the final phase, we unfreeze all modules
and jointly train all 2D and 3D modules with the loss terms defined in Eq. 14.

5 Experiments

In this section, we present extensive evaluations of our models on 1) 3D tasks
including 3D classification, and 3D segmentation; 2) 2D image understanding
tasks; and 3) Cross-Modality scene queries. In all experiments, we freeze weights
for the feature backbones G2D and H3D unless otherwise stated. Due to the page
limit, we only include the most common benchmarks in the main paper, please
check the appendix for more experiments including 3D detection, 2D retrieval,
and 2D depth estimation.

5.1 3D Tasks

For point-cloud-based 3D tasks, we use the 3D feature backbone H3D out-of-the-
box and freeze its weights, while training a point cloud input head J PC

3D with 4
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sparse convolutional layers. For a 3D point x, we fetch the interpolated features
in the 3D feature grid Fs as the point feature (Eq. 6). Depending on the actual
3D tasks, different output heads could be added to further process these point
features.
3D Classification We follow the testing protocols in the previous works [61,
62] to evaluate on ModelNet40 [58] and ScanObjectNN [51]. ModelNet40 is a
synthetic dataset of CAD models containing around 10k training samples and
2.5k testing samples. ScanObjectNN is a real-world 3D dataset with around
15k objects extracted from indoor scans. We follow the same dataset setup and
preparation protocols as in ULIP [61] to ensure consistent evaluation. We apply
normalization on the point clouds before passing them into the input processing
head and use a simple 3-layer sparse convolutional network with average pooling
and 1-layer MLP output with softmax to predict the scene class. Only these two
modules are trained with standard cross entropy loss on the target dataset and
the 3D feature backbone is kept frozen. Results are in Tab. 1 on the left.

Table 1: Left: 3D classification results on ScanObjectNN (before slash) and Model-
Net40 (after slash). Right: 3D segmentation results (mIOU) on ScanNet and S3DIS.
For both tasks, ConDense outperforms all the baselines including train-from-scratch
methods and pre-training methods.ConDense outperforms all the baselines including
train-from-scratch and pre-training methods.

Model Overall Acc Cls-mean Acc

PointNet [40] 68.2 / 89.2 63.4 / 86.0
PointNet++ [41] 77.9 / 90.7 75.4 / – –
DGCNN [55] 78.1 / 92.9 73.6 / 90.2
MVTN [18] 82.8 / 93.8 – – / 92.0
PointMLP [32] 85.7 / 94.1 84.4 / 91.3
PointNeXt [43] 87.5 / – – 85.9 / – –

Point2Vec [69] 87.5 / 94.8 86.0 / 92.0
ULIP (w/ PointMLP) [61] 88.8 / 94.3 87.8 / 92.3
ULIP-2 (w/ PointNeXt) [62] 90.8 / – – 90.3 / – –
ReCon [42] 90.6 / 94.7 – – / – –
PointGPT [10] 93.4 / 94.9 – – / – –
ConDense (Ours) 94.1 / 95.2 93.4 / 93.1

Model ScanNet S3DIS

PointNet++ [41] 53.5 54.5
MinkowskiNet [12] 72.2 65.4
PointCNN [27] – 65.4
KPConv [50] 69.2 70.6
PointNeXt [43] 71.5 74.9
PointMetaBase [29] 72.8 77.0
PointVector [15] – 78.4

PointContrast [59] 74.1 –
MSC (w/ SparseUNet) [57] 75.5 –
PPT (w/ SparseUNet) [56] 76.4 78.1
PonderV2 (w/ SparseUNet) [80] 77.0 79.9
Swin3D [63] 77.5 79.8
ConDense (Ours) 79.8 80.7

3D Segmentation We follow the testing protocols in the previous works [43,63]
to evaluate on the ScanNet [14] and the S3DIS [2] datasets. ScanNet contains
1613 indoor scans with 20 semantic classes, we train on its train split and report
the mean Intersection over Union (mIoU) on the validation split. S3DIS contains
272 scenes, we train on its training split and evaluate on its validation set with
the 6-fold cross-validation scheme. The voxel sizes for ScanNet and S3DIS are
set to 2cm and 5cm, respectively. We extract the point feature from the backbone
with trilinear interpolation (Eq. 6) and use a simple linear layer with softmax
to predict the point label. Only the input processing head and the linear layer
are trained with standard cross entropy loss on the target dataset and the 3D
feature backbone is kept frozen. Results are presented in Tab. 1 on the right.
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Summarizing the results in Tab. 1, our method has demonstrated superior
performance compared to other train-from-scratch and pre-training frameworks
on both 3D classification and segmentation tasks. Despite only tuning the input
and output heads, our approach still surpasses the performance of pre-trained
methods that fine-tune the entire model. Furthermore, while many other meth-
ods heavily utilize point cloud data during pre-training [61, 62], our approach
achieves remarkable results without this requirement.

5.2 2D Tasks

To evaluate the performance of the pre-trained 2D feature backbone G2D, we
follow the settings as presented in DINOv2 [35], and compare with common self-
supervised pre-trained baselines including MAE [19], DINO [6,35], and iBOT [77],
as well as weakly supervised visual-language pre-trained model OpenCLIP [23].
For both classification and segmentation, we present results under the “Linear
(lin.)” setting [6,35]. We include more results under the “multi-scale (+ms)” set-
ting and more 3D benchmarks in our appendix. Results are presented in Tab. 2.
2D Classification We test the quality of the holistic image representation pro-
duced by the model on the ImageNet-1k [48] and Places205 [76] classification
dataset. A linear probe is added on top of the frozen feature backbone to generate
the prediction, following previous works [6, 35].
2D Segmentation We test on the task of semantic image segmentation to
evaluate the quality of our learned representation. A linear layer is trained to
predict class logits from patch tokens and it is upscaled to obtain the final
segmentation map, following previous works [6, 35].

Table 2: 2D classification and segmentation results on multiple evaluation datasets
with frozen features. ConDense improves over the DINOv2 in all benchmarks.

Classification (Acc) Segmentation (mIOU)

Model ImageNet Places205 ADE20k PascalVOC

OpenCLIP [23] 86.2 69.8 39.3 71.4

MAE [19] 76.6 52.4 33.3 67.6
DINO [6] 79.2 60.4 31.8 66.4
iBOT [77] 82.3 64.4 44.6 82.3
DINOv2 [35] 86.5 67.5 49.0 83.0

ConDense 89.6 70.2 53.6 85.1

For both 2D classification and segmentation benchmarks, our 3D-informed
ConDense shows consistent improvement over the original DINOv2 and indi-
cate that our 2D-3D consensus training pipeline can help improve the perfor-
mance of the existing 2D foundation models

5.3 Cross-Modality Scene Query

Leveraging the joint 2D-3D co-embedding property of ConDense, we are able
to query across modalities. Here we tackle a series of matching tasks including
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scene identification from 2D images and a newly proposed task – 3D scene du-
plication detection. The results are presented in Tab. 3. Dataset and test details
are covered in the Appendix. We also include more experiments of 2D-3D joint
query, including instance retrieval in real-world 3D scenes with 2D exemplars
(e.g . CAD renderings), and query with natural languages in the Appendix.
3D Scene Retrieval with a Single Image (2D-3D). In this task, we retrieve
a scene from a repository with a single view. To compare with 2D-only methods,
we first render 5 views (Ren5) from a scene and compute the cosine similarity of
the query image and rendered views, and then use the winner-take-all scheme to
identify the scene. In Tab. 3, it can be seen ConDense 2D is a strong baseline
not only outperforming all the other 2D methods but also performing better
than ULIP-2. In 2D-3D methods, both global (using globally averaged feature)
and KP (key point matching with RANSAC) variants of ConDense do better
than the other 2D-3D method.

Table 3: 3D scene retrieval and 3D scene duplicate detection results on multiple
datasets with frozen features. The upper includes 2D solutions where scenes are repre-
sented by 5 random views (Ren5), and the lower includes 2D-3D native methods.

3D Retrieval (Acc) 3D Dup. Det. (AP∗
75)

Model Objectron ScanNet ScanNet Replica

OpenCLIP (Ren5) [23] 90.3 49.8 51.0 52.7
DINOv2 (Ren5) [35] 88.1 43.1 41.3 43.3
Unicom (Ren5) [1] 92.9 52.5 54.3 57.0
ConDense 2D (Ren5) 94.6 53.3 58.7 59.0

ULIP-2 [62] 89.7 61.7 63.0 66.6
ConDense-Global 91.6 70.1 65.3 66.9
ConDense-KP 92.9 78.4 70.7 72.0

3D Scene Duplicate Detection (3D - 3D). We further test the matching
capabilities of ConDense at the scene level by proposing a new task of detecting
duplicate scenes in a large NeRF repository. Our method is generalizable to
both NeRF and Point-Cloud inputs, and we run our experiments on ScanNet
and Replica [14, 49]. Results are presented in Tab. 3. Here, Ren5 methods are
similarly defined as in the previous 3D scene retrieval, where scenes are rendered
into images and the image embeddings are used. We use θ = 0.75 as the threshold
to determine if two embeddings belong to the same scene. Here we find the
remarkable effectiveness of our key points. There is a large gap between 2D-
3D methods for this task, showing the need to tackle this task in 3D feature
space. While ConDense-Global performs similarly to ULIP-2, ConDense-KP
is significantly better for scene-to-scene matching.

6 Ablation Studies and Discussions

In this section, we perform experiments to verify the effectiveness of our design.
The ablation study results are presented in Tab. 4. Freeze the 2D encoder?
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Table 4: Ablation study on removing individual components in our pre-training
pipeline, evaluated on both 3D classification (Overall Acc on ScanObjectNN, before
slash) and 2D classification (Acc on ImageNet-1k, after slash).

Full Model Freeze 2D No Lp No Lfid 10% Data

94.1 / 89.6 91.3 / 86.5 90.5 / 87.1 89.7 / 79.9 88.7 / 79.1

When we freeze the 2D encoder, as is done in other methods [39, 61], we ob-
served a worse performance in performance for both 2D and 3D tasks. We can
also see that the features from our backbone are more 3D consistent and con-
tains more detail. Please check the visualization in our supplementary materials.
Sparse feature helps? The sparse feature module is an integral component of
our framework, not only enabling novel capabilities in 2D-3D retrieval but also
serving as a strong self-supervision signal to enhance performance on individual
2D and 3D tasks. 2D fidelity helps? The 2D fidelity loss helps prevent the 2D
features from collapsing to a trivial solution or overfitting the biased data distri-
bution. The exclusion of the 2D fidelity module has a detrimental impact on the
quality of both 2D and 3D tasks, as evidenced by our experiments. Part of this
loss is due to multi-view datasets being still considerably smaller than 2D image
datasets, and featuring mostly man-made objects and indoor scenes. The lim-
ited size and biased distribution can cause the features to deviate significantly,
leading to worse results.

7 Conclusions

In this work, we have presented ConDense, a framework for 3D pre-training
that adeptly harmonizes 2D and 3D feature extraction using pre-trained 2D net-
works and multi-view datasets, in both the dense and the sparse feature regimes.
Our approach not only provides a pre-trained 3D network acing in multiple tasks
but also enhances the quality of 2D feature representation and establishes a uni-
fied embedding space for multi-modal data interaction. Extensive experiments
demonstrate the superiority of ConDense over existing 3D pre-training meth-
ods in tasks like 3D classification and 3D segmentation and in new applications
such as 2D image queries of 3D NeRF scenes. ConDense marks an advance in
3D computer vision, reducing the reliance on scarce 3D data and enabling more
efficient and multi-modality queries on 3D scenes.

Nonetheless, the pipeline comes with several limitations including the rela-
tively high cost of processing multi-view data. Exploring more efficient ways to
exploit multi-view data as well as ready-to-use 3D data could be a useful future
direction. Furthermore, combining techniques from contrastive learning meth-
ods [21, 59] and efficient fine-tuning methods (e.g . LoRA [22]) could improve
the overall robustness and efficiency of the pipeline. We believe that ConDense
opens up exciting avenues for model pre-training and 2D/3D feature backbones,
and defer these to future research in this direction.
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A Additional Details

A.1 Dataset Details

Generating NeRFs We use MVImgNet [67], ScanNet [14], and RealEstate10k [79]
for our 2D-3D pre-training. To generate NeRFs for our pre-training dataset, we
use the MipNeRF-360 [3] official implementation to fit the scenes. For MVImgNet,
we trained 4000 steps for each scene. For ScanNet and RealEstate10k we trained
8000 steps for each scene. We half the image resolution before using it as training
supervision. All the NeRF are fitted with 8 V100 GPUs. We find these settings
are enough for generating NeRF with good qualities. We summarized the NeRF
quality in terms of PSNR and SSIM in Tab. 5. It takes around 35000 V100
GPU hours to build these NeRFs, and we parallelize the process on around 1000
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Fig. 4: Visualization of using different types of input to query the target scene reposi-
tory (ScanNet). Within each pair are query inputs (left) and top-1 query results (right).

GPUs. For ScanNet, we are determining the bounding boxes with the ground-
truth meshes. For MVImgNet and RealEstate10k, we use the ray near-far values
and camera locations to determine the scene bounds.

We acknowledge that fitting NeRFs on multi-view datasets requires signifi-
cant computation. However, we believe this upfront cost is justified: (1) It enables
3D backbone pre-training without explicit 3D supervision, which is much more
time-consuming to acquire. (2) Creating these datasets is a one-time process,
and they can be shared among researchers to avoid repeated computation. (3)
Faster rendering models have emerged since we developed the pipeline, especially
the 3D Gaussian Splatting, which is even more suitable for our pipeline due to
its sparsity nature. Adoption of these newer models could potentially cut the
computational cost greatly.

Table 5: NeRF quality on the pre-training datasets with PSNR (before the slash)
and SSIM (after the slash), tested on the sampled 1% images on each dataset’s native
image resolution.

MVImgNet ScanNet RealEstate10k

30.23 / 0.939 25.78 / 0.901 27.24 / 0.922

2D Input Details For MVImgNet [67], we use all 6.4M images in 214k scenes
spreading over 238 classes for pre-training. Images are center-cropped and resized
to 336× 336 before being fed into 2D branch input. For ScanNet [14], we use all
1513 scans for training. We filter out blurred frames by calculating the variance
of the Laplacian matrix and ignore them for the 2D branch inputs. Other images
are randomly cropped in 336 × 336 before being used as 2D inputs. The same
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sampling and pre-processing schemes are applied for RealEstate10k [79]. For 2D
fidelity loss, we sample from all 14M images in ImageNet-21k spreading over 21k
classes. Images are resized in 336×336 before being processed by our 2D branch
and output features were compared with the DINOv2 ViT-g/14 model [35] to
enforce the 2D fidelity.

3D Input Details During training, we grid sample the NeRFs with resolution
varying from 64× 64× 64 to 256× 256× 256 to ensure adaptability to different
resolutions. These samples are then re-scaled to 128 × 128 × 128, with 0.5 pos-
sibility of being sparse-dilated. The output 3D feature grid Fs has the spatial
resolution of 128× 128× 128 in all experiments in this paper.

A.2 Network Details

3D Networks We follow the conventions and implementations as in Minkowsk-
iNet [12] for all our 3D networks. Specifically, for input processing heads J3D,
we apply 3 sparse convolution layers with “5× 5× 5× 1, 16”, “5× 5× 5× 1, 32”
and “5× 5× 5× 1, 64” configurations, similarly following the input processing of
[12]. Here × indicates a hypercubic sparse kernel. For the 3D reasoning backbone
H3D, we apply the same architecture as MinkowskiUNet32 in [12] but remove
the original input head and modify the number of output channels to match the
2D feature channels.

Key Point Prediction The process is illustrated in Fig. 3. Two different 2-layer
MLPs are used for reasoning key point possibilities from 2D and 3D inputs.

A.3 Experiment Details

Computational Footprints For data preparation, we use V100 GPUs for
fitting each scene. It takes around 35k V100 GPU hours. For pre-training, we use
A100 GPUs and it takes around 4k A100 GPU hours, including both distillation
and joint tuning stages. The total estimated power consumption is 12.1 MWh
and carbon emitted is 5.8t CO2eq.

Cross-Modality Scene Query We use 3 datasets: Objectron [51], Scan-
Net [14], and Replica [49] for cross-modality scene query tasks. To NeRF these
scenes, we trained 4000 steps for Objectron and 8000 steps for both ScanNet
and Replica on each scan. We use ground-truth bounding boxes included in
these datasets. For “Ren5” baselines, we render images in the same resolution as
in their corresponding datasets and the 5 views are randomly sampled from the
original camera trajectories. So these 2D-Native methods are taking advantage of
that queries and indices are drawn from the same trajectory, where in real-world
cases this is not possible– since the original image sequences and trajectories are
typically not accessible in 3D models. For ULIP-2 [62], we use its global scene
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embedding to perform the top-1 matching between the queries and indices. For
our methods, we use 32 key points for each 2D image and 32, 64, and 64 key
points for 3D input from Objectron, ScanNet, and Replica respectively. For our
2D-3D key point matching, we use the threshold 0.75 and select the 3D scene
with the most number of successful matches as the query result.
3D Scene Retrieval with a Single Image (2D-3D). For Objectron [51],
we sampled 1000 scenes spreading over 9 object categories. For each scene, we
sample one image as the test query. We use top-1 to match between queries and
keys and calculate the retrieval accuracy. For ScanNet [14], we use all 1513 scans.
We sample one frame as a test query per 100 frames and at least one frame for
every scene regardless of its length.
3D Scene Duplicate Detection (3D - 3D). For both ScanNet [14] and
Replica [49], we sample 300 scene pairs where half of them are NeRFs from the
same scene (duplicates) and half of them not. For ScanNet, the duplicates are
created from different scans of the same scenes. (e.g . scene #0 has 3 different
scans.) For Replica, the duplicates are created from the overlapping scans of the
same scenes, where at least 50% of trajectory overlappings are ensured. In this
way, we comprehensively test the 3D matching capability of models on either full
scans or adjacent partial scans. We use 0.75 as the threshold when determining
if two embeddings belong to the same scene as a way to detect duplicated scenes.
AP∗

75 is calculated as the classification accuracy of duplicate detection when the
threshold is 0.75.

Training and Loss Scheduling After initializing the 2D branches and fine-
tuning the 2D key point detector, we train for 30k iterations with λfid and λp = 0
while only tuning the 3D networks (distillation from 2D to 3D), where we sample
8 NeRF scenes in each iteration and sample rays within the original set of rays
for supervision. After this stage, we train an additional 30k iterations with a
linear warm-up of λfid and λp in 5k iterations where all 2D and 3D modules
are jointly fine-tuned. Throughout the process, we use an AdamW optimizer, an
initial LayerScale value of 1e-5, a weight decay cosine schedule from 0.02 to 0.24,
a learning rate of 3.3e-4, and its warm-up of 2k iterations.

B Additional Experiments and Ablations

B.1 Feature Visualization

For Fig. 5, we ran PCA on the generated feature maps, both DINOv2 (2nd row)
and ours (3rd row), of each scene and selected top-3 components to visualize
them as red, green, and blue, respectively. We also visualize the top 10 confident
(in terms of predicted probabilities) key points with positive 3D matches in this
figure (1st row).
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Fig. 5: Visualization of our 2D dense feature reveals its superiority over the Original
DINOv2 feature in terms of consistency across multi-view images. Additionally, we
present visualizations of sparse feature locations identified by our key point detector.

B.2 Cross-Modality Queries

We show in Fig. 4 the visualization of using different types of input to query
the target 3D scene repository (ScanNet). The unique 2D-3D co-embedded em-
bedding space with sparse key point design enables ConDense to effectively
query objects in repositories of large scenes. Here, ConDense is not only able
to query 3D scenes with partial views from the dataset but also able to find ob-
jects in these scenes that match the appearance from unseen internet images. In
addition, by changing our backbone to a multi-scale CLIP [45] feature as in [26],
we further acquire the ability to query 3D scenes with natural languages inputs,
and thus build a language-image-3D co-embedded feature space with sparse key
points. With this modified model, we can query scene repositories with text
inputs as in Fig. 4 third row.

B.3 Additional 3D Experiments

In the main paper, we have done experiments on 3D classification and 3D seg-
mentation and shown our performance on multiple datasets. Here we present
additional 3D experiments on different tasks and more datasets.

3D Detection We show that our 3D features are also useful for 3D detec-
tion by following the settings of [63] to attach a state-of-the-art detection head
CAGoup3D [54] and fine-tune the entire network for fair comparisions. The
results are presented in Tab. 6. We provide an additional 2.1 and 2.9 points
gain in terms of mAP@0.25 and mAP@0.5 respectively over an already strong
baseline CAGroup3D. Our performance is also better than other pre-training
methods [59,63].
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Table 6: 3D detection results (mAP@0.25 and mAP@0.5) on ScanNet.

Model mAP@0.25 mAP@0.5

RepSurf [46] 71.2 54.8
SoftGroup [53] 71.6 59.4
CAGroup3D [54] 75.1 61.3

PointContrast [59] 59.2 37.3
Swin3D [63] w/ CAGroup3D 76.4 63.2
ConDense w/ CAGroup3D 77.2 64.2

Table 7: 2D retrieval results (top-1 Acc) on MVImgNet and ReaEstate10k datasets.

Model MVImgNet RealEstate10k

OpenCLIP [23] 70.1 63.0
MAE [19] 65.4 55.1
DINO [6] 65.6 58.9
DINOv2 [35] 70.1 61.3
ConDense 76.9 63.2

Table 8: 3D Classification (Acc) on MVImgNet, Co3D, and ShapeNet. Our method
is even more useful when 3D training data are scarce (ShapeNet 1%).

Method MVImgNet Co3D ShapeNet (1%) ShapeNet (10%) ShapeNet (Full)
From Scratch 73.5 81.1 61.2 76.9 84.9
PointContrast [59] 76.9 84.9 65.8 78.9 86.6
Point-MAE [37] 79.1 86.2 72.3 81.1 89.2
ULIP-2 [62] 82.9 86.1 74.3 81.9 89.3
Ours (Freeze 2D) 87.3 88.8 80.1 83.9 90.1
Ours 91.3 93.8 81.4 85.3 91.9

Table 9: 3D Segmentation (mIOU) on ScanNet, SemanticKitti, and S3DIS. Our
method is even more useful when 3D training data are scarce (ScanNet 1%).

Method ScanNet (1%) ScanNet (10%) ScanNet (100%) SemanticKitti S3DIS
PointNet [40] 42.2 62.1 72.2 19.6 47.6
Mix3D [34] 39.4 69.9 73.6 65.4 63.5
PointContrast [59] 52.9 70.4 74.1 71.7 75.2
Swin3D [63] 54.8 65.2 77.5 74.7 79.8
Ours (Freeze 2D) 65.6 70.0 78.1 74.6 80.6
Ours 67.3 72.3 79.8 75.1 80.7

More on 3D Classification and 3D Segmentation We tested our 3D capa-
bilities on more datasets and also with varying amounts of 3D training data. The
results are presented in Tab. 8 (classification) and Tab. 9 (segmentation). We
see consistent improvement over all baselines from these results. Also, it can be



7

seen that our method is even more useful when 3D training data is very scarce
(See ShapeNet 1% and ScanNet 1%).

B.4 Additional 2D Experiments

In the main paper, we have done experiments on 2D classification and 2D seg-
mentation and shown our performance on multiple datasets. Here we present
additional 2D experiments on more tasks.

2D Retrieval We evaluate our performance for image retrieval with MVImgNet [67]
and ScanNet [14]. We follow the experiment settings of [6, 35] by freezing the
features and directly applying k-NN for retrieval. On both datasets, we perform
tests with 1 query image and 1 index image on each scene. The top-1 accuracy
is reported in Tab. 7. Our ConDense clearly generates better global features
suitable for retrieval tasks.

Depth Estimation We follow the settings in [35] and attach a linear classifier
on top of one (lin. 1) or four (lin. 4) transformer layers to infer depth from the
frozen feature backbones. It can be seen that our performance is better than
all other pre-training backbones except DINOv2. The reason is that the 2D-3D
consensus loss enforces the feature to be invariant across different views, and the
2D branch is thus expected to generate the same features for the same spatial
point regardless of viewing angles and distances. The process of 2D-3D consensus
facilitates more 3D-informed and consistent features, as can be observed from
Fig. 5. Such a property could be desired or unwanted depending on the exact
downstream tasks. And we defer the more in-depth study into this property
to future research. To validate this, we show our results on multi-view stereo
(MVS) depth estimation. Here we tested two widely used MVS depth estimation
methods– MVSNet [64] and PointMVS [11], on the standard dataset (DTU [24]).
It can be seen that both backbones are boosted by our features, and ConDense
outperforms DINOv2 by a large margin.

More on 2D Segmentation We test our performance on 2D segmentation
following the “+ms” setting as proposed in [35]. The results are presented in
Tab. 12.

B.5 Additional Ablation Studies

Effect of NeRF Quality We observed differences in performance when using
trained NeRFs of different quality. The numbers are reported on ImageNet (2D
Cls) and ScanObjectNN (3D Cls) on a lighter version of the final model reported
in the main paper.

Results are presented in Tab. 14. We find that pre-training with data of
lower quality will have an impact on performance, especially for 3D tasks. We
take measures such as using different iteration numbers to ensure convergence,
and filtering out low-quality frames as mentioned previously.
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Table 10: Depth estimation with frozen features. We report performance when training
a linear classifier on top of one (lin. 1) or four (lin. 4) transformer layers. We report
the RMSE metric on the 3 datasets. Lower is better.

NYUd NYUd → SUN RGBD

Method lin. 1 lin. 4 lin. 1 lin. 4

OpenCLIP [23] 0.541 0.510 0.537 0.476

MAE [19] 0.517 0.483 0.545 0.523
DINO [6] 0.555 0.539 0.553 0.541
iBOT [77] 0.417 0.387 0.447 0.435
DINOv2 [35] 0.344 0.298 0.402 0.362
Ours 0.361 0.322 0.389 0.367

Table 11: Stereo depth estimation on the DTU dataset. Backbone methods could
benefit a lot from our feature initialization.

Model Overall Err.

MVSNet [64] 0.462
PointMVS [11] 0.366

DINOv2 [35] w/ MVSNet 0.389
DINOv2 [35] w/ PointMVS 0.365
ConDense w/ MVSNet 0.341
ConDense w/ PointMVS 0.320

B.6 Commonly Used Backbones

The MinkowskiNet (MNet) is the established state-of-the-art for dense 3D tasks
and has been adopted by most 3D dense task models. So we select MinkowskiNet
as our backbone. Here we had an experiment comparing different backbones –
results are reported below on ScanObjectNN (3D Cls) and ScanNet (3D Seg).

We see better performance, especially on 3D Seg, with MNet. The reasons
behind this may include (1) an overfitting tendency of the transformer-based
model PointBERT, which aligns with OpenScene’s finding (their Sec. 6.4); (2)
our better generalizability from training to test domains, where point distribu-
tions are different. We will include a more detailed discussion on the performance
and scalability of different backbones once time permits.
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Table 12: Semantic segmentation on ADE20K, CityScapes, and Pascal VOC with
frozen features and a linear classifier (lin.) and with multiscale (+ms).

ADE20k CityScapes Pascal VOC

Method lin. +ms lin. +ms lin. +ms

OpenCLIP [23] 39.3 46.0 60.3 70.3 71.4 79.2

MAE [19] 33.3 30.7 58.4 61.0 67.6 63.3
DINO [6] 31.8 35.2 56.9 66.2 66.4 75.6
iBOT [77] 44.6 47.5 64.8 74.5 82.3 84.3
DINOv2 [35] 49.0 53.0 71.3 81.0 83.0 86.2

Ours 50.2 53.8 74.1 83.1 83.2 86.5

Table 13: Effect of NeRF Quality

Training NeRF Type Mip-NeRF (2k steps) Mip-NeRF (4k steps)
Quality (PSNR/SSIM) 28.54 / 0.899 30.23 / 0.939
2D Cls / 3D Cls 86.2 / 88.9 87.7 / 93.2

Table 14: Comparing different backbones.

PointBERT PointNeXt MinkowskiNet
#Parameters 32.3M 41.6M 41.3M
3D Cls / 3D Seg 87.2 / - 92.1 / 77.0 93.2 / 79.1
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